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Abstract
There has been little progress in the analysis of two-way diffusion in the last
few decades due to the difficulties brought by the interface section similar to
a free boundary condition. In this paper, however, the equivalent probability
model is considered and the interface section is precisely described by an
integral equation. The solution of two-way diffusion is then expressed in an
integral form with the integrand being the solution of a classical first passage
time model and the solution of a one-dimensional integral equation which is
relatively easier to solve. The exact expression of the two-way diffusion enables
us to find the explicit solution of the model with infinite horizontal boundaries
and without drifting.

PACS numbers: 02.50.Cw, 05.40.−a, 68.35.Fx

1. Introduction

A counter-current separator is a widely used device to perform chemical separations and is
extensively studied in biological and chemical experiments (see, for example, [1, 10]). One
of the main purposes of a counter-current separator is to purify a contaminated fluid (gas
or liquid). Two different fluids move in opposite directions and the contaminated fluid will
gradually become purer. Let φ be the dimensionless concentration of the contaminant in
the two fluids. Mathematically, the counter-current separator can be described by two-way
diffusions, also known as forward–backward diffusions or counter diffusions [3, 4, 7, 8]. The
general model for φ is the following partial differential equation (PDE)

−h(x)
∂φ

∂y
= µ(x)

∂φ

∂x
+

1

2
σ 2(x)

∂2φ

∂x2
−a � x � b 0 � y � 1 (1)
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where

h(x)

{
�0 x > 0
�0 x < 0

is a smooth function of x for x �= 0, and h(0)
def= 0, and µ, σ ∈ C1(R). The boundary

conditions of φ are

∂φ

∂x

∣∣∣∣
x=−a+,b−

= 0 (2)

and {
φ(x > 0, y = 1) = 1
φ(x < 0, y = 0) = 0.

(3)

Hence at x = −a and x = b, φ satisfies reflection boundary conditions (equation (2)).
Conditions (3) simply imply that one of the phases, say x < 0, is pure (see equation (1.1f) in
[8]). φ(x, y) has continuous second-order partial derivatives with respect to x and y except
at two points (x = 0, y = 0) and (x = 0, y = 1) where φ(x, y) is continuous. Hence h(x)

describes the opposite speeds in the counter-current device. The application of equation (1)
can also be found in other areas such as the distribution of particles impinging upon an elastic
point scatterer [7], etc.

Despite the wide applications of model (1), the theoretical developments are far from
being satisfactory. Even at a first glance, we could immediately realize the difficulty in
solving equation (1) possibly due to the jumping of h(x). Even for the simplest model with
the following assumptions:


h(x) =

{
xα−2 x > 0
−D|x|α−2 x < 0

α > 1

µ(x) = 0
σ 2(x) = 1

(4)

it is almost impossible to directly construct a solution in the framework of well-known
techniques for solving a PDE: eigen expansions, due to the lack of orthogonality of the two
sets of different eigenfunctions across the two half regions: {−a � x � 0} and {0 � x � b},
as pointed out in [8]. As a matter of fact, in the situation when a = b = ∞, the eigen
expansion approach becomes totally invalid. In the circumstances of equation (4), we see that
the particle is a purely Brownian particle (without drifting). It moves in opposite directions
in the left x < 0 and right regions x > 0. Furthermore, when α = 2, particles in the regions
x < 0 and x > 0 move with constant but opposite directions (if D > 0). When α > 2, the
speed is continuous at x = 0. The most interesting case is 1 < α < 2, the speed is now
infinite at x = 0, i.e. particles move with opposite and infinite speed at x = 0+ and x = 0−.

In the current paper, we first develop a general framework, in terms of diffusion processes,
to represent the solution of equation (1) with boundary conditions (2) and (3). By virtue of
the probability representation, the original problem, to solve a PDE with two opposite speed
directions, is replaced by a much simpler problem, to find the solution A of a PDE with one
speed and the solution B of an integral equation. The solution of the original equation (1)
with boundary conditions (2) and (3) is then obtained via an integration with respect to the
two solutions A and B (see exact expression in the next section). To demonstrate the power of
the probability representation, we then apply the method to solving the PDE with boundary
conditions (4) with a = b = ∞. An exact solution is obtained. The exact solution enables us
to gain further insights into the problem. For example, the speed h(x) defined by equation (4)
is infinite when α < 2 and x → 0. We might expect that the solution should exhibit certain
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singularities, at least at points (0, 0) and (0, 1). However, we find that φ is quite well defined
(see theorem 3 and figure 2).

2. Probability model

Now let us introduce the equivalent probability model. Consider a particle moving
stochastically, the particle’s velocity and position at time t are represented by h(X(t)) and
Y (t), respectively, where h(x) is the function defined above, and X(t) is the diffusion process
characterized by

dX(t) = µ(X(t)) dt + σ(X(t)) dB(t) (5)

where µ and σ are functions in C1(R1). Therefore

Y (t) =
∫ t

0
h(X(s)) ds + Y (0)

with a constant Y (0). Let T 0 and T 1 be the first passage times of the particle to the lines y = 1
and y = 0, namely

T 0 = inf{t : Y (t) = 0} T 1 = inf{t : Y (t) = 1}
and

φ(x, y) = Prob{T 1 < T 0|X(0) = x, Y (0) = y}. (6)

Then for the situation with −a = b = ∞, we have the following conclusions.

Lemma 1. The function φ(x, y) defined by equation (6) satisfies the PDE (1) with boundary
conditions (3).

Proof. With the strong Markovian property and the definition of φ(x, y), we obtain

φ(x, y) = Prob{T 1 < T 0|X(0) = x, Y (0) = y}
= Prob{T 1 + dt < T 0 + dt|X(0) = x, Y (0) = y}
= E{Prob{T 1 + dt < T 0 + dt|X(dt), Y (dt)}|X(0) = x, Y (0) = y}
= E{φ(X(dt), Y (dt))|X(0) = x, Y (0) = y}
= φ(x, y) +

∂φ

∂x
E(dX) +

∂φ

∂y
E(dY ) +

1

2

∂2φ

∂x2
E(dX)2 + o(dt).

Thus

0 = h(x)
∂φ

∂y
+ µ(x)

∂φ

∂x
+

1

2
σ 2(x)

∂2φ

∂x2
. (7)

Also the restrictions

φ(x � 0, y = 1) = 1
φ(x � 0, y = 0) = 0

are obvious from the model’s probability meaning. Thus we complete the proof. �

The physical meaning of lemma 1 is quite clear. φ is the density of one phase, depending
on the travelling speed h(x). When the travelling speed increases, the probability of T 1 < T 0

is greater and so the density becomes higher when y → 1. Otherwise, the density becomes
lower (see figure 1).

Without loss of generality we assume that b > a. For the convenience of later reasoning,
we introduce more notation:
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Figure 1. A schematic plot of the two-way diffusion. Particles in the regions x < 0 move upwards
with a speed −D = h(x) < 0, but particles in the regions x > 0 move downwards with a speed
h(x) = +1. The thick horizontal line at y = 1, x > 0 represents φ(x > 0, y = 1) = 1. The
vertical, dashed line represents the interface between the two phases.

Tx = inf{t > 0 : X(t) = 0|X(0) = x > 0} (8)

Y ∗
x =

∫ Tx

0
h(X(t)) dt (9)

F(x, u) = Prob{Y ∗
x � u} x > 0 (10)

F ∗(−x, u) : the dual of F(x, u) when x < 0, i.e. F ∗(−x, u) = F(x, u) (11)

g(u) = dφ(x = 0, y = u)

du
(12)

θ(u) = ∂F (x = 0+, y = u)

∂x
(13)

θ∗(u) = −∂F ∗(−x = 0+, y = u)

∂x
. (14)

Here we can see Tx is the first impact time of x = 0 of the particle, given the initial position
x, Y ∗

x is the distance travelled by the particle before it hits x = 0, and F(x, u) is the distribution
function of Y ∗

x . Furthermore g and θ are the density functions (derivatives) of φ and F. Also
to make our formulae tidy we frequently use β = 1/α.

Lemma 2. The function F(x, u) is the solution of the following PDE

h(x)
∂F

∂u
= µ(x)

∂F

∂x
+

1

2
σ 2(x)

∂2F

∂x2
x > 0 (15)

with boundary conditions

F(x = 0, u) = 1
∂F (x, u = 0)

∂x
= −δ(x)

where δ(x) is the Dirac function.
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Proof. Again using the strong Markovian property and the definition of F, we have

F(x, u) = E(F (x + dX,u − h(x) dt)|X(0) = x, Y (0) = u)

= F(x, u) +
∂F

∂x
µ(x) dt − ∂F

∂u
h(x) dt +

1

2
σ 2(x)

∂2F

∂x2
+ o(dt).

Taking the limit for dt → 0, we have the PDE in the lemma. The boundary conditions are
obvious from the definitions. This completes the proof. �

Theorem 1. For the PDE system (1) with infinite ranges (a = b = ∞) and boundary
conditions (3), the solution φ(x, y) could be represented in the following form,

∫ y

0
θ∗(u)g(y − u) du =

∫ (1−y)

0
θ(u)g(y + u) du (16)

φ(x, y) =
{

1 − ∫ (1−y)

0 F(x, u)g(y + u) du x � 0∫ y

0 F ∗(−x, u)g(y − u) du x � 0.
(17)

Proof. Since the event {T 1 < T 0} could be partitioned as the mutually exclusive union of
{T 1 < T 0, Y ∗

x > 1 − y} and {T 1 < T 0, Y ∗
x � 1 − y}, with the strong Markovian property of

X(t) we have

φ(x, y) = Prob{T 1 < T 0|X(0) = x, Y (0) = y} (18)

=
{

Prob{Y ∗
x > 1 − y} +

∫ (1−y)

0 fY ∗
x
(u)φ(0, y + u) du x � 0∫ y

0 f ∗
Y ∗−x

(u)φ(0, y − u) du x � 0.
(19)

Performing the integration by parts the second equation of the theorem follows. Then
differentiate with respect to x and let x approach 0+ and 0− in two integral forms, respectively;
the first equation of the theorem follows immediately. This completes the proof. �

Note here the probability meaning of the interface section leads obviously to the fact that
g(x) is a probability density function. We will follow this procedure to analyse the model
defined by equations (1) and (4) in the next section.

Theorem 1 is obtained in terms of the diffusion process X(t). However the expressions
in theorem 1 are independent of the process X(t). Furthermore we note that φ is a linear
function of F and F ∗. We then conclude that

Corollary 1. For the PDE system (1) with reflection boundary conditions (2) and (3), the
solution φ(x, y) could be represented as follows,

∫ y

0
θ∗(u)g(y − u) du =

∫ (1−y)

0
θ(u)g(y + u) du (20)

φ(x, y) =
{

1 − ∫ (1−y)

0 F(x, u)g(y + u) du x � 0∫ y

0 F ∗(−x, u)g(y − u) du x � 0
(21)

where F is defined in lemma 2 with ∂F (x,u=b−)

∂x
= 0 and F ∗ with ∂F ∗(x,u=−a+)

∂x
= 0.

Clearly theorem 1 and corollary 1 provide us with a general framework to solve the two-
way diffusions:
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• Step 1. Find the function F(x, u) by solving the PDE (15) in lemma 2. Note that F(x, u)

is restricted to the regions with x > 0 and is much easier to solve analytically than
equation (1).

• Step 2. Find function g(u) by solving the integral equation in theorem 1.
• Step 3. The solution φ(x, y) can then be obtained in the integral form as in theorem 1 or

corollary 1.

3. Explicit solution

As a demonstration of the applications of our theory developed before, in this section we
perform a fairly exclusive analysis of the two-way diffusion model with conditions as in
equation (4) defined in section 1. The range of x is the whole real axis, i.e. the boundaries are
at infinity.

With β = 1/α, we have the following theorem.

Theorem 2. Suppose Z ∼ �(β), x > 0, u > 0, and

G(x, u) = Prob

{
Z >

2β2xα

u

}
=

∫ ∞

2β2xα

u

zβ−1 e−z

�(β)
dz. (22)

Then

1

2

∂2G

∂x2
= xα−2 ∂G

∂u
(23)

G(x = 0, u) = 1
∂G

∂x

∣∣∣∣
u=0

= −δ(x) (24)

where δ(x, 0) is the Dirac delta function at 0.
So G(x, u) = F(x, u)|x>0 (defined in lemma 2).

Proof. It is readily seen that

∂G

∂u
= (2β2)βx

uβ+1
e− (2β2)

u

/
�(β) (25)

∂G

∂x
= −α(2β2)β

uβ
e− (2β2)x

u

/
�(β) (26)

∂2G

∂x2
= α2(2β2)β+1xα−1

uβ+1
e− (2β2)x

u

/
�(β) (27)

= 2(2β2)βxα−1

uβ+1
e− (2β2 )x

u

/
�(β). (28)

Therefore,

1

2

∂2G

∂x2
= xα−2 ∂G

∂u
. (29)

The boundary conditions are obvious. The proof is completed. �

Lemma 3. The interface section curve g(y) = ∂φ(x = 0, y)/∂y, i.e. the solution of the
integral equation (16), is the B(γ, δ) density function,

g(y) = 1

B(γ, δ)
yγ−1(1 − y)δ−1 (30)
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where

δ = 1

π
arctan

(
sin(πβ)

Dβ + cos(πβ)

)
(31)

γ = β − δ (32)

= 1

π
arctan

(
sin(πβ)

D−β + cos(πβ)

)
(33)

β = 1/α. (34)

Proof. From theorem 1,

φ(x, y) =
{

1 − ∫ (1−y)

0 F(x, u)g(y + u) du x � 0∫ y

0 F ∗(−x, u)g(y − u) du x � 0.

Note that the particular form of function h(x) leads to

F ∗(−x, u) = F
(
−x,

u

D

)
x < 0 (35)

and

θ∗(u) = θ
( u

D

)
. (36)

Also theorem 3 leads to θ(u) ∝ u−β . So the integral equation in theorem 1 becomes

Dβ

∫ y

0
u−βg(y − u) du =

∫ 1−y

0
u−βg(y + u) du. (37)

Let

g(u) = 1

B(γ, δ)
uγ−1(1 − u)δ−1 (γ + δ = β). (38)

We intend to determine the parameters γ and δ to satisfy equation (37). With the identity∫ 1

0
xδ−1(1 − x)γ−1(1 + ax)−(δ+γ ) dx = (1 + a)−δB(γ, δ) (39)

the left- and right-hand sides of (37) become

LHS = Dβ B(1 − β, γ )

B(γ, δ)
y−δ(1 − y)−γ (40)

RHS = B(1 − β, δ)

B(γ, δ)
y−δ(1 − y)−γ . (41)

Letting LHS = RHS, we have

Dβ = B(1 − β, δ)

B(1 − β, γ )

= �(1 − β)�(δ)

�(1 − β + δ)

�(1 − β + γ )

�(1 − β)�(γ )

= �(δ)�(1 − δ)

�(γ )�(1 − γ )
= π

sin(πδ)

sin(πγ )

π

= sin(π(β − δ))

sin(πδ)
= sin(πβ) cos(πδ) − sin(πδ) cos(πβ)

sin(πδ)

= sin(πβ) cot(πδ) − cos(πβ)

cot(πδ) = Dβ + cos(πβ)

sin(πβ)
.
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Thus

δ = 1

π
arctan

(
sin(πβ)

Dβ + cos (πβ)

)
(42)

γ = β − δ. (43)

This completes our proof. �

Summarizing all the above results concerning the model, we have

Theorem 3. The model has the explicit solution in the following integral form,

F(x, u) =
∫ ∞

2β2xα

u

zβ−1 e−z

�(β)
dz g(y) = 1

B(γ, δ)
yγ−1(1 − y)δ−1

where

δ = 1

π
arctan

(
sin(πβ)

Dβ + cos(πβ)

)
γ = β − δ

φ(x, y) =
{

1 − ∫ (1−y)

0 F(x, u)g(y + u) du x � 0∫ y

0 F
(−x, u

D

)
g(y − u) du x � 0.

Byproduct. From the symmetry of γ and δ in the solution of the model, we immediately have
the following triangular identity which is easy to verify but not obvious by sight.

Corollary 2. For any β > 0 and C > 0,

1 = 1

πβ
arctan

(
sin(πβ)

C + cos(πβ)

)
+

1

πβ
arctan

(
sin(πβ)

C−1 + cos(πβ)

)
. (44)

When C = 1 this is exactly the half-angle formula.

There are two ‘bending points’ on the solution surface (x, y, φ(x, y)) where the function
∂φ

∂x
is not continuous. They are (0, 0, φ(0, 0)) and (0, 1, φ(0, 1)). We consider the behaviour

of φ(x, y) near (x = 0+, y = 0) only. The other situation could be considered similarly. For
the model we have the following result.

Corollary 3. For x > 0 and y = 0,

φ(x, y = 0) =
∫ 2β2xα

0

tγ−1 e−t

�(γ )
dt (45)

and

φ(x, y = 0) ≈ (2β2)γ

�(γ + 1)
xη when x is close to 0 (46)

where

η = 1

πβ
arctan

(
sin(πβ)

D−β + cos(πβ)

)
. (47)

So we have the range of η,

lim
D↑∞

η = 1 (48)

η = 1/2 when D = 1 (49)

lim
D↓0

η = 0. (50)
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Proof. From theorem 3 we have, for x > 0,

φ(x, y = 0) = 1 −
∫ 1

0
F(x, u)g(u) du (51)

= 1 −
∫ 1

0
Prob

{
Z � 2β2xα

u

}
g(u) du (52)

=
∫ 1

0
Prob

{
Z � 2β2xα

u

}
g(u) du (53)

= Prob{ZU � 2β2xα} (54)

where Z ∼ �(β) and U ∼ B(γ, δ) are two independent random variables naturally derived
from previous lemmas and theorems.

Since β = γ + δ, we have ZU ∼ �(γ ). So

φ(x > 0, y = 0) =
∫ 2β2xα

0

tγ−1 e−t

�(γ )
dt . (55)

With x ∼ 0+,

φ(x > 0, y = 0) ≈ 1

�(γ )

∫ 2β2xα

0
tγ−1 dt (56)

= (2β2)γ

�(γ + 1)
xαγ (57)

as we expected (η = αγ ).
The range of η is obvious. Thus we complete the proof. �

From corollary 3, we see that φ(x, 0) approaches zero when x → 0 and D > 0, i.e. at
point x = 0, y = 0 there are no particles left. Nevertheless, when D = 0, there is no flow of
count currents, we see that φ(x, 0) is a constant. More exactly it equals its initial value.

In figure 2 we plot φ versus (x, y) with α = 1.5, 2, 3. It is easily seen that the smaller
α is, the sharper the changes of φ (comparing the upper panel (right) with the bottom panel
(right)).

4. Discussions

In terms of diffusion processes, we first found an integral expression for the two-way diffusion.
The difficulty of solving the two-way diffusion is reduced to the problem of solving the usual
diffusion equation and an integral equation. The approach enables us to find the exact solution
of the model without drifting and with infinite boundary conditions. From the exact solution,
we got a much better understanding of the properties of the solution. To the best of our
knowledge, such an exact solution has not been reported in the literature.

When α ∈ (0, 1], the solution of the first passage model still exists uniquely as
equation (22). But no equilibrium could be reached in our probability model. In other
words, there is no solution for the integral equation (16), so the corresponding two-way
diffusion problem is not well posed. Geometrically, when α approaches 1+, ∂φ

∂x
approaches

infinity at x = 0. On the other hand, this implies that the interface section functions of all the
situations (with infinite boundaries) are the set of all the Beta distributions with the sum of the
parameters being smaller than 1.
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Figure 2. φ(x, y) versus (x, y) with α = 1.5, 2, 3 (left). Contour plots of φ(x, y) (right). It is
easily seen that the interfaces between left regions x < 0 and right regions x > 0 become sharper
when α decreases.

Furthermore, from the exact solution, we can ask why the singularity in the speed
(1 < α < 2) does not result in a singularity in the solution. To answer this question we
need to investigate the properties of stopping times defined in this paper, which is one of our
ongoing research topics.

In summary, in addition to the half-range eigen expansion schemes [8], the integral
equation describing the interface section and developed in the current paper offers another
powerful and promising tool to explore the model.
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